The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 X 1 X 1 1 1 X 1 1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 X 1 1 1 1 1 X X 1 1 1 1 0 6 0 0 0 0 0 0 0 0 6 3 3 6 6 6 0 3 6 3 6 0 6 0 3 6 0 3 6 3 3 3 6 6 6 0 3 3 0 6 0 0 6 3 3 6 3 3 6 0 0 3 3 0 6 3 0 6 6 3 6 3 6 0 6 3 0 0 6 6 0 0 6 0 6 3 0 0 0 3 6 6 3 6 3 0 0 6 0 0 6 0 0 0 6 0 0 0 0 6 3 3 3 0 0 3 6 3 6 0 6 6 0 3 3 0 6 6 3 0 6 0 3 3 3 6 3 0 3 3 6 3 3 0 6 0 3 3 0 6 0 6 6 0 0 0 6 3 6 3 3 3 6 6 0 0 6 3 6 6 0 0 6 3 0 6 3 3 6 0 6 3 3 3 3 0 0 6 0 0 3 0 6 0 0 0 0 6 0 0 6 3 0 3 0 0 3 6 6 3 0 6 0 3 0 3 3 0 3 0 6 3 3 6 6 6 3 0 0 3 3 6 3 3 6 6 3 0 3 6 3 0 3 0 3 6 3 0 3 3 6 6 3 3 3 0 6 6 6 3 3 6 3 0 0 6 6 6 3 0 6 3 0 6 0 6 3 0 0 0 3 3 0 3 3 3 0 0 0 0 6 0 3 3 6 0 3 3 3 0 3 3 0 3 6 0 3 3 0 6 3 0 3 6 0 6 0 6 0 3 0 3 0 3 6 6 0 3 3 6 3 3 0 6 0 3 3 6 3 0 0 6 3 6 3 0 6 3 3 0 0 6 6 6 0 0 0 0 6 6 3 3 0 0 3 3 0 6 3 6 3 6 3 0 0 0 6 3 0 0 0 0 0 6 3 3 3 3 3 3 6 3 6 6 3 6 3 3 3 3 0 3 0 6 0 0 3 6 3 0 3 6 0 6 6 0 6 6 0 6 3 0 3 6 6 6 6 0 6 3 0 3 6 3 3 6 6 3 3 3 3 6 3 6 0 6 3 6 6 3 6 3 0 6 6 6 6 6 6 3 0 6 0 6 3 0 6 0 3 6 generates a code of length 92 over Z9[X]/(X^2+3,3X) who´s minimum homogenous weight is 171. Homogenous weight enumerator: w(x)=1x^0+86x^171+110x^174+238x^177+354x^180+412x^183+4374x^184+516x^186+228x^189+100x^192+24x^195+28x^198+10x^201+22x^204+22x^207+14x^210+8x^213+6x^216+2x^219+2x^222+2x^225+2x^252 The gray image is a code over GF(3) with n=828, k=8 and d=513. This code was found by Heurico 1.16 in 0.892 seconds.